Land Loss in the Mississippi Delta: Important Role of River Diversions

Harry Roberts

Coastal Studies Institute
School of the Coast and Environment
Louisiana State University

Louisiana's Coastal Land Loss: A Regional Geology Problem

Mississippi Delta Land Loss and Gain

Key Geologic Factors in Land Loss

- Crustal Downwarping
- Compaction-Dewatering of Young Deposits
- Faulting
- Decreasing Sediment Supply-Increasing Accommodation

Sea Level History

The Lower Mississippi River and Delta

- Glacial-period braided streams within incised valley
- Holocene valley filling and delta construction
- Valley fill reflects interactions between climate and sea-level change

Sediment Fill of the Incised Alluvial Valley

Sea Level History

Holocene Sea Level

Initiation of Holocene World Deltas

Mississippi River Delta Holocene History of Delta Growth

- 6 major coupled channel belts and delta complexes
- like most major deltas, growth occurred after ca. 7000 yrs BP

The Lower Mississippi River and Delta

- Glacial-period braided streams within incised valley
- Holocene valley filling and delta construction
- Valley fill reflects interactions between climate and sea-level change

Longitudinal Profile of the Lower Mississippi Valley and Delta

Tracing Late Pleistocene Braided Streams into the Subsurface Using Base of Backswamp Deposits

Lower Mississippi Valley and Delta Magnitude of Post-Glacial Deposition

Total storage = 1860-2300 km³ or 2790-3450 BT of sediment Storage rate = ~230-290 MT/yr over 12,000 yr post-glacial period

Mississippi River Discharges and Sediment Storage

Pre-Dam
Sediment Load*: ~400 – 500 MT/yr
Mean Sediment Storage**:
230 – 290 MT/yr

1976-2006

Mississippi & Atchafalaya Sediment Load: ~205 MT/yr

*Suspended Sediment Load Meade et al. (1990); Kesel et al. (1992) **Avg. over 12 kyrs

Mississippi River Alluvial Valley

Lower Mississippi River Sediment Load Pre- and Post-Dam Loads

Data courtesy of USGS Baton Rouge

Modern post-dam sediment loads are ~65% of the long-term mean storage component alone

Coastal Plain GPS Vertical Velocities

Global Sea-Level Rise Sea-Level Change Data and Projections

Coastal Plain Elevations

Projected Submergence: 2000 vs 2100

THE LOUISIANA COAST IN 2000

THE LOUISIANA COAST IN 2100?

The Louisiana Coast in 2100?

Fundamental Questions: River Diversions

- How are the sediments partitioned within the coastal-shelf system?
- What is the sediment retention capability in the delta and adjacent marshland?
- What are the important processes linked to sediment transport to the delta-marsh-offshore?

Rising Flood and Cold Fronts Form Synergistic Sediment Delivery Processes

Cold Front Modulation of Sediment Transport

- Prefrontal:
 - Onshore Winds
 - Water Level Set-Up
 - Onshore SedimentTransport

- Postfrontal:
 - Offshore Winds
 - Water Level Set-Down
 - Offshore SedimentTransport

Prefrontal Conditions

RESULT: Marshward Transport of Sediment (20-30 times/year)

