

First things first.....

- All injection wells must have cores
- Rotary sidewalls or conventional core plugs
 Percussion sidewalls not acceptable, but can still be useful in monitor wells
- Project must have at least 1 conventional core No set distance between injection wells and monitoring wells
- · All wells must correlate • Upstream is downstream and downstream is upstream
- The reservoir is downstream.
- EPA/LDNR reservoir simulator is your daddy... You can apply with 1 plug, but.....
 State primacy ~Q1 2023

2

Background

Identify Lithologies; intelligent sampling ;calibrate geological interpretation for lateral extent

Calibration of reservoir geomechanical and petrophysical properties

Calibration of petrophysical properties to thin sections (Thin Sections, XRD, SEM)

Calibrate porosity, perm in representative lithologies

Seal Capacity Evaluation; Reservoir Model evaluation for trapping and CO2 migration; Fluid Interaction and Injectivity evaluation

Early Reservoir Properties - DECT

What:

Mineralogy, Porosity, Rock Strength

Why:

 Finer sampling density, so aids in measured data application for calibration of Petrophysical, Reservoir, Geomechanical, and Seismic Models

Key Points:

 Use of Dual Energy CT for guided sample selection – refinement of DECT with data for high resolution core data

5

Geological Description

Why:

- Identify lithologies
- Calibrate geological interpretation for lateral extent evaluation
- Intelligent sampling of representative lithologies
- Calibration of Petrophysical Models and SCAL Properties
- Identification and location of potential damaging mineralogy

Core Description – LAMCount™

High Resolution Net-to-Gross Reservoir Evaluation

- Petrophysical and Facies Integration
- Depositional Model

The LamCount[™] technique uses a hyper detailed core description to quantify net-togross to classify every potential lamina and bed as potential, marginal or non-reservoir units. The input data can be used for reservoir simulation and log modeling

Relative Perm

\leq

What:

• Gas-Water RelK, with hysteresis

Why:

- Calibrate Reservoir Model
- Forecasting for CO₂ migration and trapping
- Formation Damage Potential Injectivity Issues; Salt Deposition

8

CO² Injectivity and Flow

- Relative Permeability
- Clay Types
- Formation Damage
 - Fluid Interactions
 - High Salinity
 - Injection rates etc

CO2-Water Relative Permeability

13

Confinability - Rock Mechanics

What:

 Triaxial Tests; thermal expansion coefficient, Biot; Cohesion; Friction; dilation angle; compressibility – bore hole stability - injectivity

Why:

Calibrate calculation of reservoir frac gradient and seismic model

14

HPMI – Seal Capacity

Sample	Depth,	Swanson Permeability,	Porosity,	Mercury Sat'n at 55,000 psi,	Approximate Threshold Pressure (Gas-Water),	Approximate gas column height, ft	Median Pore Throat Radius,
8m	8026.00	0.370	0 100	1 000	24.3	50.6	0.346
12m	8400.00	0.00011	0.069	0.642	596.6	1244.	0.0033
17m	11665.00	0.000040	0.070	0.558	417.6	871.	0.00223
18m	1167.00	0.000006	0.015	0.863	417.6	871.	0.00310

Pres	sure osia		1	SUMMARY O	F CALCULATIO	N PARAMET
	Resv			(0) Contact	cosine	(T) Interfacial
1	-		Fluid System	Angle	Contact 0	Tension
	16.9	Labo	atory Gas-water Oil-water Gas-oil Air-mercury	0.0 30.0 0.0 140.	1.00 0.886 1.00 0.785	72.0 48.0 24.0 485.
		Rese	rvoir ¹ Oil-water Gas-water	30.0 0.0	0.866	30.0 50.0

72.0 41.6 24.0 372

26.0 50.0

16

System A-Hg

Electrical Properties with Pc

What:

• FF/RI with Pc

Why:

- Calibrate Capillary and Electrical Properties for calibration of reservoir model and log analysis
- Future Case-hole logging comparison to understand "current" water saturation

Electrical Properties

Considerations

 Including assessment of excess conductivity from clay

19

Compatibility – Minerology, Formation Damage

Minerology, Geochem

• XRD, XRF, SEM

Completion Fluid Evaluation

Scale and Corrosion Inhibitors, Surfactants, Clay Stabilizers and Acid Treatments

Critical Salinity

• Base fluids such as drilling muds & fracture fluids

Critical Velocity

• Evaluate damage potential of formation waters at high velocity

20

X-ray Diffraction (XRD)

Mineralogy and Composition Determined by XRD —

- Whole rock analysis by powder diffraction
- Detailed clay analysis (<4µm ESD) on oriented clays
- Advanced digital detection system
- Multiple mineral and crystal structure databases (ICDD, FIZ/NIST, in-house proprietary library, etc.)
- Compositional analysis integrating additional analytical testing including Total Organic Carbon
- Calculation of mineral volumes and derived XRD sample grain density as well as weight percent composition
 Non-destructive test - allows for additional testing on the very
- same sample (e.g. X-ray fluorescence)
- Clay analysis verified using comprehensive computer-simulated phyllosilicate database

Common Clays

- May migrate
- Fibrous or thin irregular platelets May migrate May be susceptible to damage on drying in cores

Illite

1	C. State
	Non-expanding
	Moderate cation exchan
	Platelets or honeycomb

Chlorite

aggregates May migrate Contact with HCl Acid releases iron (Iron Hydroxide)²²

22

Permeability versus Throughput Testing

- Permeability versus Throughput testing monitors specific or effective permeability to various fluids as a function of number of pore volumes injected through reservoir rock
- Begins with a fluid that is considered non-damaging as a baseline permeability •
- Next and subsequent fluids injected have permeability continuously monitored for 10-100 pore volumes to evaluate rock-fluid compatibility
- · If a reduction in permeability is observed, permeability in the reverse flow direction is measured to investigate for mobile fines
- · Regain Permeability is calculated as permeability divided by initial permeability

25

26

Summarizing...

Injectability – permeability, relative permeability, formation damage <u>Confinability</u> – rock mechanics/seal evaluations, permeability <u>Compatibility</u> – geochemistry/mineralogy, injection rates, fluid-fluid reactions, rock-fluid reactions, socio-economic-geological reactions.....

Thanks for having me Questions?